Integrals
- ∫af(x)dx=a∫f(x)dx
- ∫[f(x)+g(x)]dx=∫f(x)dx+∫g(x)dx
- ∫xmdx=xm+1m+1(m≠−1)=lnx(m=−1)
- ∫sinxdx=−cosx
- ∫cosxdx=sinx
- ∫tanxdx=ln|secx|
- ∫sin2axdx=x2−sin2ax4a
- ∫cos2axdx=x2+sin2ax4a
- ∫sinaxcosaxdx=−cos2ax4a
- ∫eaxdx=1aeax
- ∫xeaxdx=eaxa2(ax−1)
- ∫lnaxdx=xlnax−x
- ∫dxa2+x2=1atan−1xa
- ∫dxa2−x2=12aln∣∣x+ax−a∣∣
- ∫dxa2+x2−−−−−−√=sinh−1xa
- ∫dxa2−x2−−−−−−√=sin−1xa
- ∫a2+x2−−−−−−√dx=x2a2+x2−−−−−−√+a22sinh−1xa
- ∫a2−x2−−−−−−√dx=x2a2−x2−−−−−−√+a22sin−1xa
No comments:
Post a Comment