∫af(x)dx=a∫f(x)dx ∫[f(x)+g(x)]dx=∫f(x)dx+∫g(x)dx ∫xmdx=xm+1m+1(m≠−1)=lnx(m=−1) ∫sinxdx=−cosx ∫cosxdx=sinx ∫tanxdx=ln|secx| ∫sin2axdx=x2−sin2ax4a ∫cos2axdx=x2+sin2ax4a ∫sinaxcosaxdx=−cos2ax4a ∫eaxdx=1aeax ∫xeaxdx=eaxa2(ax−1) ∫lnaxdx=xlnax−x ∫dxa2+x2=1atan−1xa ∫dxa2−x2=12aln∣∣x+ax−a∣∣ ∫dxa2+x2−−−−−−√=sinh−1xa ∫dxa2−x2−−−−−−√=sin−1xa ∫a2+x2−−−−−−√dx=x2a2+x2−−−−−−√+a22sinh−1xa ∫a2−x2−−−−−−√dx=x2a2−x2−−−−−−√+a22sin−1xa
No comments:
Post a Comment